The SNAT target is used to do Source Network Address Translation, which means that this target will rewrite the Source IP address in the IP header of the packet. This is what we want, for example, when several hosts have to share an Internet connection. We can then turn on ip forwarding in the kernel, and write an SNAT rule which will translate all packets going out from our local network to the source IP of our own Internet connection. Without doing this, the outside world would not know where to send reply packets, since our local networks mostly use the IANA specified IP addresses which are allocated for LAN networks. If we forwarded these packets as is, no one on the Internet would know that they were actually from us. The SNAT target does all the translation needed to do this kind of work, letting all packets leaving our LAN look as if they came from a single host, which would be our firewall.
The SNAT target is only valid within the nat table, within the POSTROUTING chain. This is in other words the only chain in which you may use SNAT. Only the first packet in a connection is mangled by SNAT, and after that all future packets using the same connection will also be SNATted. Furthermore, the initial rules in the POSTROUTING chain will be applied to all the packets in the same stream.
Table 11-12. SNAT target options
Option | --to-source |
Example | iptables -t nat -A POSTROUTING -p tcp -o eth0 -j SNAT --to-source 194.236.50.155-194.236.50.160:1024-32000 |
Explanation | The --to-source option is used to specify which source the packet should use. This option, at its simplest, takes one IP address which we want to use for the source IP address in the IP header. If we want to balance between several IP addresses, we can use a range of IP addresses, separated by a hyphen. The --to--source IP numbers could then, for instance, be something like in the above example: 194.236.50.155-194.236.50.160. The source IP for each stream that we open would then be allocated randomly from these, and a single stream would always use the same IP address for all packets within that stream. We can also specify a range of ports to be used by SNAT. All the source ports would then be confined to the ports specified. The port bit of the rule would then look like in the example above, :1024-32000. This is only valid if -p tcp or -p udp was specified somewhere in the match of the rule in question. iptables will always try to avoid making any port alterations if possible, but if two hosts try to use the same ports, iptables will map one of them to another port. If no port range is specified, then if they're needed, all source ports below 512 will be mapped to other ports below 512. Those between source ports 512 and 1023 will be mapped to ports below 1024. All other ports will be mapped to 1024 or above. As previously stated, iptables will always try to maintain the source ports used by the actual workstation making the connection. Note that this has nothing to do with destination ports, so if a client tries to make contact with an HTTP server outside the firewall, it will not be mapped to the FTP control port. |
Works under Linux kernel 2.3, 2.4, 2.5 and 2.6. |